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Abstract. Subglacial bedrock properties are a key to understand and predict the dynamics and future evolution of the Antarctic 

Ice Sheet. However, the ice sheet bed is largely inaccessible for direct sampling. Therefore, it is crucial to efficiently combine 10 

various attributes derived from satellite and airborne geophysical surveys to characterize subglacial properties. To reduce 

subjective choices in the joint analysis of data and related biases, we evaluate a Self-Organizing Map (SOM), an unsupervised 

machine learning technique. The concept of SOMs, an unsupervised machine learning approach, is briefly discussed, but we 

focus on data selection and their associated attributes for the case at hand. For this, we analysis the correlation between 

attributes in order to provide a validation of an appropriate choice. The SOM is trained on attributes derived from gravity, 15 

magnetics and ice-penetrating radar data for the Wilkes Land area in East Antarctica, a region where basal conditions may be 

of high importance to ice sheet flow and corresponding sea level rise, and where also suitable data sets for the application of 

the SOM exist. In contrast to the earlier studies, our approach uses original line data as far as possible, which have much higher 

resolution/sampling than in smooth gridded products, which were used for previous analyses. Previous analysis indicated the 

presence of both crystalline basement and sedimentary basins in the area, and our SOM shows a remarkable agreement, but 20 

suggests some points of difference, as for example, some highlands appear similar on previous interpretations, but have quite 

dissimilar physical settings, which is also expressed in our results. These variations can potentially be exploited further in 

describing subglacial properties and the coupling between bed and overlying ice-sheets.  
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1 Introduction 25 

Subglacial bedrock properties, are one of the key components in an improved understanding of the Antarctic Ice Sheet (e.g. 

Aitken et al. 2023, Bell et al. 2008, McCormack et al. 2022). Especially, the properties at the ice sheet bed (ice-rock interface) 

can have a significant impact on ice flow dynamics as roughness and consolidation of the bed, as well as hydro(geo)logical 

processes, impact friction and basal sliding processes, and therefore, ice flow velocities (Koellner et al., 2019). Hereby, 

especially the presence of layers of sediments and sedimentary rocks at the base of the ice are of interest as these can affect 30 

basal friction, water flow and advect geothermal heat (e.g. Koellner, et al. 2019, Zoet and Iverson, 2020, Li et al. 2022, Aitken 

et al. 2023). 

There are very few seismic lines on the Antarctic continent suitable for resolving the upper crust (e.g. Anandakrishnan et al. 

1998, Bayer et al. 2009, Leitchenkov et al. 2016), so geological models are conventionally based on interpretation of bed 

topography (.g. Taylor 1914, Elliot, 1975, Jordan et al. 2020), airborne magnetic or gravity datasets (e.g. Ferraccioli et al. 35 

2002, 2009, McLean et al. 2009, Aitken et al. 2014, Kim et al. 2022), or a combination of those (e.g. Li et al., 2023, Wu et al. 

2023). Especially, aeromagnetic data is the best suited geophysical data set to map subglacial geology (Betts et al. 2024).  

However, the interpretation requires some form of constraint to overcome the inherent ambiguities. Therefore, the combination 

with other geophysical data sets in an integrated manner is often the most sensible choice (e.g. Jordan et al. 2023, Lowe et al. 

2024a, b). 40 

Airborne radar data are complimentary and well-suited for imaging within the ice but are almost entirely reflected at the ice-

rock interface. Therefore, radar can provide characteristics of the bed-ice interface, but physical properties of the bedrock itself 

are difficult to derive. Still, detailed morphology and inferred attributes like roughness can indicate some near-surface 

geological characteristics (e.g. Shepherd et al. 2006, Rippin et al., 2014; Jordan et al., 2010, Jordan et al. 2023), as an area with 

increased roughness can be inferred to have a more erosion-resistant bed. However, the flow speed of the ice sheets from 45 

current and past events also impacts erosion and modifies the roughness (Jamieson et al., 2014). Hence, combination of these 

data sets might provide a mean to overcome some of the limitations.  

Recently, Aitken et al. (2023) presented a detailed classification of geological bed type in Antarctica by analysing multiple 

geophysical data sets and models. Hereby, they compiled and synthesized available data and models into a classification map. 

While Aiken et al. (2023) presented continent-wide, detail classification of geological bed types, it is in part subject to 50 

interpretations and remains equivocal at some locations due to complex geology and/or limited data coverages. Another 

limitation are the different methods used in establishing the subglacial property models subsequently compiled. Please see 

Aitken et al. (2023) for more details on this. 

Machine learning and statistical based methods are nowadays popular approaches for less heterogenous models. Such methods 

were applied to estimate geothermal heat flow (Lösing and Ebbing, 2021, Stål et al. 2021) and presence of sedimentary rocks 55 

(Li et al., 2022). Especially, machine learning methods such as gradient boosting regression tree have become popular to map 

subglacial properties in both Greenland and Antarctica (e.g. Rezvanbehbahani et al. 2019, Lösing & Ebbing, 2021, Li et al. 

2022, Colgan et al. 2023). These studies are commonly on the scale of an entire continent as these approaches rely on training 
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datasets of reasonable size, which is often a limiting factor as data coverage and quality is variable, and the subjective choice 

of which data type to consider as suitable.  60 

As an alternative, we employ here Self-Organizing Maps (SOMs; Kohonen, 1990) to exploit local information. SOMs are an 

unsupervised machine learning approach, where similarities within different data types are estimated without assigning these 

to predefined categories. In the following, we will shortly summarize the concept of SOMs and introduce the data and attribute 

used for our analysis. We discuss our results both in comparison to the classification by Aitken et al. (2023), and with respect 

to the choice of input data by studying correlation between them. 65 

The study area is in Wilkes Land, East Antarctica (Figure 1), chosen for the excellent coverage with line data and as it is a key 

region for studying the role of tectonic boundary conditions on the behaviour of the East Antarctic Ice Sheet (Aitken et al. 

2014, McCormack et al. 2022). 

 

Figure 1: Wilkes Land, East Antarctica: A) Bed elevation from Bedmachine (Morlighem, 2020, 2022). Important subglacial and 70 
geographical features are annotated. B) Ice flow speed (Mouginot, 2017), overlain by NASA Operation Ice Bridge (OIB) flightlines 

used in this study. 

2 Self-Organizing Maps 

SOMs, unlike other unsupervised learning algorithms, do not attempt to categorize data; rather, they reduce the dimensionality 

of a complex dataset. In our example, we will map the three datasets (bed elevation, gravity, and magnetics) and the related 75 

attributes into a 2D space (map) representation. In this space, similar data points are placed in proximity to each other, enabling 

the identification of clusters. In the following, we briefly explain the concept of SOMs, but the interested reader is referred to 

e.g. Klose (2006) for a more detailed description. 
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Self-Organizing Maps (SOMs) are a simple neural network consisting of a single layer. Each neuron represents a cell on the 

two-dimensional map with one weight for every dimension of the input data. Neuron j is described by its weights m j. The 80 

weights of a cell translate to a value for each data type (e.g. bed roughness, magnetic anomaly, …), they can therefore also be 

understood as coordinate in the multidimensional data space.  

For a given data point xi, a best-matching neuron with the weights mb is chosen in such a way that the Euclidean distance 

between xi and mb is minimized: 

 ‖𝒙𝒊 − 𝒎𝒃‖ = 𝐦𝐢𝐧
𝒋

{‖𝒙𝒊 − 𝒎𝒋‖}          (1) 85 

The weights of mb and the point xi are therefore very similar. Besides the weights, a neuron also has a location on the self-

organizing map, which describes the coordinate r in a two-dimensional space.  

The network is trained iteratively t times for a random-chosen input data point xi. The best-matching neuron for this data point 

is determined, and then the weights of it and its neighbours are adjusted towards xi. The value of the adjustment is determined 

by a neighbourhood function hbj(t), it will be 1 for the best-matching neuron and decay as further the neuron is away from the 90 

best matching neuron on the two-dimensional map. As a result of this neighbourhood function, the map is trained in a way that 

ensures neighbouring cells on the map have similar weights and therefore will have similar data points mapping to the same 

cluster. In addition, for convergence purposes a time-dependent learning rate α(t) is employed.  

The training of a cell mj(t) can be expressed as follows: 

𝑚𝑗(𝑡 + 1) = 𝑚𝑗(𝑡) + 𝛼(𝑡)ℎ𝑏𝑗(𝑡)[𝑥𝑖 − 𝑚𝑗(𝑡)]       (2) 95 

The choice of the neighbourhood function can vary, and we utilise a Gaussian function: 

         (3) 

Here, rb and rj represent the locations of the best-matching neuron and the neuron to be trained on the self-organizing map, 

respectively. The parameter σ influences the smoothness of the computed map. 

It is important to keep in mind that the two-dimensional SOM does not represent a geographic map, it is an arbitrary lower 100 

dimensional representation of the higher dimensional training dataset. E.g. an area with crystalline rocks with high gravity,  

and magnetic value, as well as a rough bed, will appear close to similar areas, even though they are geographically far apart.  

3 Study area, Data, and SOM analysis 

3.1 Study area 

As mentioned before the study area in Wilkes Land, East Antarctica (Figure 1), has been chosen due to its excellent data 105 

coverage and its importance for our understanding of evolution of the East Antarctic Ice Sheet. The area has recently gained 

attention due to its increasing loss in ice mass (e.g. Davison et al. 2023) and rapid basal melt rates its surrounding ice shelves 

(Rignot et al., 2013) and consequently its massive potential for sea-level rise. The Wilkes Land ice catchments may be more 
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vulnerable to change than other catchments in the East Antarctic Ice Sheet, as the ice sheet bed is predominantly below sea 

level (Fretwell et al., 2013) and is subject to marine ice sheet instability.  110 

As explained by Aitken et al. (2014), the differences in the bed conditions related to topography and geology, provide persistent 

and strong boundary conditions on the East Antarctic Ice Sheet (see also McCormack et al. 2022), and a geological record of 

a substantial past history of collapse and readvance exists (Aiken et al. 2016). Aitken et al. (2014) provided a detailed 

interpretation of subglacial geology using gravity, magnetic and subglacial topography data and studying the links to Southern 

Australia, as the conjugate neighbour during Gondwana, but details remain to be analysed as also seen on the recent 115 

classification of geological bed type by Aitken et al. (2023). Here, we explore the possibility to provide an additional level of 

details using SOMs, making as well use of the availability of high-quality airborne data sets.  

3.2 Datasets 

We use the NASA Operation Ice Bridge (OIB) dataset collected between 2009 and 2012 (Figure 2) and high-level data products 

derived from this dataset. The Radar Data were recorded using the Hi-Capability Radar Sounder (HiCARS) Version 1 and 120 

later on Version 2 instrument. (MacGregor et al. 2021, https://nsidc.org/data/icebridge). We used the derived bed elevation 

from the radargrams (Blankenship et al. 2012, 2017). This dataset, however, includes a number of short-distance data gaps 

even in areas where bed echo is clearly visible in the radargram. This leads to larger gaps in derived attributes, as can be seen 

in Eisen et al. (2020). We applied an optimisation algorithm which filled each gap with sufficiently strong returns 

automatically. It specifically maximised the amplitude and the vertical gradient of the amplitude along the chosen bed elevation 125 

while minimizing the length of the bed elevation path (Liebsch 2023). 

 

Figure 2: Data sources for the SOM: A) Bed elevation from radar data (NASA Operation Ice Bridge), B) Magnetic anomaly (taken 

from ADMAP-2 (Golynsky et al. 2018), C) Bouguer gravity anomaly (after Scheinert et al. 2016).  

Magnetic data are taken from the ADMAP-2 compilation (Golynsky et al., 2018) along the OIB flight lines. In the 130 

supplementary database Golynsky et al., 2018), the processed line data from the individual surveys are available, which are 

the basis for the ADMAP-2 map. Compared to the original data, data are slightly smoothed, but suitable for our approach. For 

details on the magnetic processing, please see Golynsky et al. (2006, 2018). 
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Gravity were as well collected as part of the OIB surveys. Unfortunately, the available gravity data have data gaps and only 

parts of the data is available in a pre-processed format (see coverage in MacGregor et al. 2021). We initially planned to 135 

reprocess the data, but due to the absence of full information about the measurements, that become impossible to us. Instead, 

we use the compilation from Scheinert et al. (2016). This 10-km-grid dataset has been sampled along the flight lines to treat it 

as survey data. Although, resampling cannot provide the full resolution of the survey data, we deem this adequate for our 

purpose, as the distance (height) between the point of observation (airplane) and the ice-bed interface is typically 3-5 km in 

the study area, leading to only minor loss of information when using the gridded gravity signal.  140 

3.3 Attributes 

We used the above datasets to generate in total 29 attributes for the SOM analysis. Several attributes were derived from a 

single data (e.g., bed elevation), because not only the signal amplitude (e.g., bed elevation) but also the spectral characteristics 

and local variations (e.g., roughness) characterize the signal. This choice is subjective; therefore, rather than limiting the 

number of attributes we include various attributes even though some attributes presumably have very similar characteristics 145 

and including both may have little impact on our final result comparing to including only one of them. Table 1 shows the list 

of all the attributes and Figure 3 shows some attributes as examples.  

 

Figure 3 Example of attributes used for the SOM. A) Basal roughness ε derived from spectral domain b) Spectral Power in a 5-15 

km wavelength bin from magnetic data and c) Shape index for gravity data (see text for more details).  150 

Attributes like roughness from radar data or spectral power in the short-wavelength magnetic field provide information about 

the variability in subglacial properties, e.g. a crystalline basement-ice interface can be expected to have a stronger contrast and 

larger variability, than an incoherent bedrock (e.g. sedimentary basin) -ice interface. Other attributes based on the gravity and 

magnetic data (e.g. curvature) are well suited to describe the changes between data points, while features like the shape index 

or the tilt derivative are also known to reflect the source characteristics. For some of these, Li (2015) provides a detailed 155 

analysis of the link between source geometry and observed field.  
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Table 1: List of all attributes used for the SOM and explained in the text. See examples in Figure 3. See Figure 4 for the correlation 

between the different attributes and Figure 5 shows the weights for the attributes.  

3.3.1 Radar/Bed elevation attributes   160 

In the following, we describe the 10 attributes based on bedrock elevation and radar data. For example, roughness can be 

computed in various ways from the bed elevation data and used the same four roughness attributes as Eisen et al. (2020). 

Isostatically adjusted bed elevation tiso 

Instead of using the bedrock topography, it can be useful to determine the isostatic adjusted topography tiso. This attribute is 

the hypothetical topographic height of the landscape assuming that no ice is present. In a simplified form, disregarding dynamic 165 

effects, it can be estimated from the ice surface height s and bed elevation z using concept of isostasy after Airy with: 

tiso = (s − z) *917/3200+ z.           (4) 

Spectral Centroid Bed 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

The spectral centroid represents the mean of all frequencies in the spectrum f(n), weighted by their spectral power S(n). 
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𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑓(𝑛)𝑁−1

𝑛=0 ⋅𝑆(𝑛)

∑ 𝑆(𝑛)𝑁−1
𝑛=0

            (5) 170 

Spectral Roughness Attribute ξ 

ξ is the integrated power spectral density of the bed elevation profile in a 500 m to 2000 m wavelength bin. Given with the 

following equation: 

ξ = ∫ 𝑆(𝑘)d
𝑘2

𝑘1
𝑘             (6) 

where S is the power spectral density and k the wavenumber in spectral domain. 175 

Spectral Roughness Attribute η 

To also capture horizontal changes in the spectral properties, Li et al. (2010) suggest to also include the integrated power 

spectral density of the horizontal derivative of the bed elevation ξsl analogue to ξ. The spectral roughness attribute η is defined 

as: η =
ξ

ξ𝑠𝑙
            (7) 

Variogram value v 180 

This roughness attribute is derived from a variogram derived from a window along the flight line. We use a bin covering 700 m 

to 800 m lag distance.  

Hurst coefficient h 

To complement the information on specific lag distances used in v, we also use the hurst coefficient h. The Hurst 

exponent corresponds to the slope of the variogram in a log-log plot and can be described as: 185 

𝑣(Δ𝑥) = 𝑣(Δ𝑥0) (
Δ𝑥

Δ𝑥0
)

ℎ

           (8) 

Moving averaged filtered bed elevation 

To avoid using the bed elevations directly and reduce noise we used a 10 km-moving average filtered bed elevation 

Standard deviation in a 10 km moving window 

We compute the standard deviation of the bed elevation z in a 10 km moving window.  190 

σ𝑏𝑒𝑑 = √
1

𝑁
∑ (𝑧𝑖 − 𝑧)2𝑁

𝑛=1             (9) 

where N is the number of points in a window. And 𝑧 is the mean of bed elevation in the window 

Kurtosis in a 10 km moving window 

Analogue to the standard deviation the kurtosis w can be computed: 

https://doi.org/10.5194/egusphere-2025-1905
Preprint. Discussion started: 12 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 

9 
 

𝑤 =
1

𝑁
∑ (

𝑧𝑖−𝑧̅

𝜎
)

4
𝑁
𝑛=1            (10) 195 

Bed Echo Tail Attribute σ 

We additionally derive an attribute from the shape of the bed echo. Direct interpretation of reflectivity can be challenging due 

to unknown attenuation within the ice (Matsuoka et al. 2011). Instead, we use the tail of the bed echo, which refers to the 

recorded signal after the initial backscattering from the bed has occurred. The tail originates from off-nadir backscattering. A 

significant advantage of this approach is that a radar ray scattered at the nadir and one scattered off-nadir encounter 200 

approximately the same conditions on their way back. Consequently, the shape of the bed echo tail can be described without 

relying on knowledge of attenuation. 

To keep the fitting procedure stable and computationally efficient across the varying conditions of the survey area we are 

assuming a simplistic gaussian decay of the amplitude. This is neglecting losses due to beam characteristics and spherical 

spreading. The amplitude A as function of incident angle 𝜑 is given as: 205 

𝐴(𝜑) = 𝐴0 ⋅ 𝑒𝑥𝑝 (
−𝑡𝑎𝑛2(𝜑)

2σ2
)          (11) 

The bed echo tail σ can then be computed as the weighted average of 𝑡𝑎𝑛(𝜑): 

σ =
∑ 𝐴𝑖

𝑁
𝑖=1 ⋅𝑡𝑎𝑛(ϕ𝑖)

∑ 𝐴𝑖
𝑁
𝑖=1

            (12) 

3.3.2 Magnetic data attributes 

For the magnetic data, 10 attributes were computed along the flight lines. Since there are few data gaps, some attributes are 210 

also computed in the spectral domain, where they are computed in a window with a length of 40 km. These attributes are 

standard features in describing the magnetic field. See Blakely et al. (1996) or Li et al. (2015) for more details. 

Magnetic anomaly (Mag) 

This corresponds to total field anomaly along the flight lines as explained above. 

Tilt Derivative (TDX mag) 215 

The TDX signal is the tilt derivative of the magnetic field (Salem et al. 2008) computed as  

TDX = arctan (HG/Mzz)          (13) 

where HG is the total horizontal gradient and Mzz, the vertical gradient 

Spectral Centroid (Centroid mag) 

Typically, magnetic are inspected in a power spectrum to identify the source depth. Here, we calculate spectral centroid of the 220 

power spectrum for 40 km window using the following equation: 
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𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑓(𝑛)𝑆(𝑛)𝑁−1

𝑛=𝑜

∑ 𝑆(𝑛)𝑁−1
𝑛=𝑜

            (14) 

Hereby, the spectral centroid represents the mean of all frequencies f(n) in the spectrum, weighted by their spectral power S(n). 

Spectral power bin (Bin Power mag) 

The spectral power of the magnetic anomaly ςmag, limited to a bin of 5-15 km wavelength is calculated using the following 225 

equation:  

𝜍𝑚𝑎𝑔 = ∫ 𝑆𝑚𝑎𝑔(𝑘)𝑑𝑘
15 𝑘𝑚

5 𝑚
          (15) 

where Smag is the classical power spectrum calculated in the wavenumber domain k. The range of 5-15 km has been chosen to 

represent subglacial sources, hereby supressing longer wavelengths due to regional sources and to suppress noise in the short-

wavelength range. The intention of this attribute is to represent wavelength corresponding to the top bedrock and is shown as 230 

example in Figure 3B. 

Moving average filtered magnetic anomaly (Mean mag) 

This was computed by removing a linear trend of the signal in a 40 km window around each point. This attribute is enhancing 

the short wavelength content in the data. 

Standard deviation in moving window (Stdev mag) 235 

The attributes represent the variability of the signal in a 40 km window around each point. See attribute A8 above for details 

on calculation. 

Kurtosis in a moving window 

Kurtosis is a measure to describe the sharpness of the magnetic anomaly. See attribute A9 above for details on calculation. 

Curvature (Curvature mag) 240 

The curvature K is calculated along the flight line by  

𝐾 = −𝑀𝑥𝑧/2𝑀𝑧            (16) 

where Mxz is the gradient along the flight line (x-direction) of the vertical magnetic field component Mz. 

More details on curvature calculations can be found in Li et al. (2015). 

Vertical gradient (VG mag) 245 

This is the vertical derivative of the vertical magnetic field component: 

𝑉𝐺 = 𝑀𝑧𝑧 =
𝜕𝑀𝑧

𝜕𝑧
             (17) 
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Analytical signal (AS mag) 

The analytical signal is calculated from the vertical gradient and the gradient along the flight line as following: 

𝐴𝑆 = √𝑀𝑥𝑧
2 + 𝑀𝑧𝑧

2             (18) 250 

Detrended Signal (Detrended mag) 

The magnetic total field anomaly was detrended by removing a linear fit of the signal for 40 km window around each data 

point. By removing such a linear trend, the attribute is more sensitive to local scale variations.  

 

3.3.3 Gravity data attributes 255 

Many attributes that prove useful in identifying geological structures rely on gradients of the gravity signal. To compute these 

gradients, we used an equivalent source approach. The gravity grid from Scheinert et al. (2016) was inverted into a density 

grid of prisms extending from the ice bed to a depth of 10 km. From this density grid, all necessary gradients could be directly 

forward calculated following Nagy et al. (2000). The attributes are explained in the following and again, please see Blakely et 

al. (1996) for more details. For the curvature attributes (C5 to C9), we are following Li et al. (2015), where the full 260 

mathematical background, tests with synthetic data and an evaluation of these attributes for airborne gravity gradients can be 

found in. Please see also Ebbing et al. (2018) for an example for satellite gravity data for Antarctica. Please note, that all of 

the following attributes are calculated for grids, not along the flight lines. 

Isostatic anomaly (Iso grv) 

To obtain the isostatic anomaly, the free air anomaly was first mass corrected using the ice and bed elevation model Bed- 265 

Machine Antarctica v2 (Morlighem et al., 2020). To minimize isostatic effects, the undulation of the Moho boundary was 

estimated assuming Airy isostasy with an assumed density contrast of 530 kg/m3 and reference depth of 25 km. The resulting 

undulation was then forward modelled using prisms with the same density contrast and subtracted from the mass corrected 

anomaly. 

Vertical gradient (VG grv) 270 

The vertical gradient of the isostatic anomaly is calculated as 

𝑉𝐺 = 𝐺𝑧𝑧 =  
𝜕𝐼𝑠𝑜 𝑔𝑟𝑣

𝜕𝑧
           (19) 

Analytical signal (AS grv) 

In contrast to the magnetic data, we calculate here the 3D analytical signal using  

𝐴𝑆 = √𝐺𝑧𝑥
2 + 𝐺𝑦𝑧

2 + 𝐺𝑧𝑧
2            (20) 275 

where Gxz, Gyz and Gzz are the derivatives in the x-, y- and z-direction of the isostatic anomaly, respectively. 
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DX Signal (TDX grv) 

See description for attribute B2 above. 

Mean curvature (Kmean grv) 

When curvature is used to interpret gravity anomalies, we try to delineate geometric information of subsurface structures from 280 

an observed non-geometric quantity. The mean curvature is calculated as  

𝐾𝑚𝑒𝑎𝑛 =
𝐺𝑥𝑥+𝐺𝑦𝑦

2𝐺𝑧
            (21) 

where Gxx, Gyy are the second derivatives in the x-, y-direction. Gz is the isostatic anomaly. 

Gaussian Curvature (KGauss grv) 

The Gaussian curvature is the product of minimum and maximum curvatures and often exhibits rapid sign changes.  285 

𝐾𝐺𝑎𝑢𝑠𝑠 = −
𝐺𝑥𝑥𝐺𝑦𝑦−𝐺𝑥𝑦

2

𝐺𝑧
2             (22) 

Maximum Curvature (Kmax grv) 

From the two attributes before, we can calculate the maximum curvature: 

𝐾𝑚𝑎𝑥 =  𝐾𝑚𝑒𝑎𝑛 + √𝐾𝑚𝑒𝑎𝑛
2 − 𝐾𝐺𝑎𝑢𝑠𝑠

2           (23) 

Minimum Curvature (Kmin grv) 290 

And similar as before, it follows the minimum curvature: 

𝐾𝑚𝑖𝑛 =  𝐾𝑚𝑒𝑎𝑛 − √𝐾𝑚𝑒𝑎𝑛
2 − 𝐾𝐺𝑎𝑢𝑠𝑠

2           (24) 

Shape index (SI grv) 

Maximum and minimum curvature can be combined as well to compute the shape index.  

𝑆𝐼 = (
2

𝜋
) arctan[(𝐾𝑚𝑎𝑥 + 𝐾𝑚𝑖𝑛)/(𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛)]         (25) 295 

The shape index is shown as an example for the gravity attributes in Figure 3C.   

3.4 SOM calculation, used algorithms and other considerations.  

For the calculation of the SOMs, we use the existing Python package MiniSOM (Vettigli, 2018). Before training a SOM, all 

attributes are normalised using their standard deviation. Additionally, we removed all values deviating by more than ten 

standard deviations from the mean, as likely measurement errors. The threshold was arbitrarily chosen to conservatively 300 

exclude extreme outliers. All remaining points will be part of the training data set. For the interpretation, it is useful to know 
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which neurons are close to each other. Therefore, a unified distance matrix containing the distance to neighbouring neurons 

for each neuron is computed. 

The resulting SOM has a shape of 30 by 30 and was trained using 15 000 iterations and a learning rate of 10−4. σ was set to 5 

to create soft weight maps and avoid overfitting. Naturally, there are numerous possibilities and parameter sets that yield 305 

acceptable results. For visual comparison only, the final map was divided in 5 clusters, where the main attributes show similar 

values. Boundaries were chosen in a way that neighbouring cells are distinct from each other. 

4 Results and discussion 

4.1 Correlation between attributes  

We first examined correlations between individual attributes (Figure 4). Particularly high correlations or anticorrelations 310 

indicates how different datasets are affecting each other and which ones can be jointly used in an interpretation. The correlation 

matrix between the attributes shows, that in general, the correlation is strongest between attributes derived from the same data 

type (radar, magnetic or gravity), as would be expected. Interestingly enough, some of the attributes do not follow this general 

observation. E.g. the Tilt-Derivative of the gravity (TDX grv) correlates stronger with radar roughness, than with any other 

gravity derived attribute. Roughness reflects first of all variations in the topography itself. Such a varying topography will 315 

cause a varying gravity and to a minor portion magnetic signal. That is seen, in the correlations of roughness with the spectral 

attributes in magnetics and with the gravity signal, which might indicate that a smooth bed-ice transition tends to be less dense 

and has lower susceptibility.   

Some of the attributes show almost no correlation with other attributes, such as Tilt-Derivative of the magnetic field (TDX 

mag), Gaussian Curvature (KGauss). An absence of correlation is not necessarily a bad observation, as that might indicate that 320 

these attributes are sensitive to different source structures.  

Another example is the correlation of the Total Magnetic Field anomaly (Mag) and its detrended version (Detrended mag). 

While the first shows some degree of correlation to the gravity derived attributes, the second does not. That corresponds to the 

different sensitivity of the gravity and magnetic field to the sources, but might also indicate that we miss some of the gravity 

signal by using a gridded data set as input and not measurements along the flight lines.  325 

Other attributes as the roughness attributes (ζ bed, η bed) show a correlation with both gravity and magnetic attributes, for 

example the spectral centroid (Centroid mag) or the shape index (SI grv). Similarly, the power of the 5 to 15 km bin (Bin 

Power mag) has a correlation with the basal roughness attributes and could indicate that sedimentary basins lack short-

wavelength signals as they tend to have smoother surfaces. Similar, correlations between the gravity attributes could support 

the idea that dense rocks tend to be more erosion-resistant, leading to rougher landscapes. 330 
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Figure 4: Correlation matrix for all attributes listed in Table 1. 

4.2 Weights for individual attributes 

Before we analyse the SOM in more details with respect to its possible (geological meaning), we show the weights for the 335 

individual attributes in Figure 5. As well as the results below, this is not a unique solution, as there are numerous possibilities 

and parameter sets that potentially yield acceptable results. Additionally, even with the same choice of parameters, the outcome 

may vary based on the initialisation. Hence, the results presented here, must be seen as an example. 

If weights are near zero across the whole map for a specific attribute, that indicates that the attribute has no significant impact 

on the SOM and could be omitted from the analysis without significant loss of information. The weights map shows that some 340 

of the attributes, e.g. SI Grav, strongly influence the results, while others, e.g. Kurtosis mag and bed, have a minor impact. 

That corresponds to the correlation with other attributes (Figure 4). Those attributes not correlating with other attributes have 
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in general less impact on the final SOMs, while those showing a larger degree of correlation are deemed more important. That 

must be taken into consideration when discussing the dependency on the final SOM on the choice of attributes for analysis. 

 345 

Figure 5 Weights for every attribute and cell of the SOM. All attributes where rescaled using the standard deviation, before the 

training started.  
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4.3 Subglacial clusters from SOMs 

Now, we analyse the SOMs in more detail by discussing apparent clusters in the map. For a first comparison between our 350 

SOM and the bed type classification by Aitken et al. (2023), we map their classification on our 2D representation (Figure 6).  

 
Figure 6 Visualization of the SOM and class distribution. Every data point (measurement on a flight line) was assigned a class 

according to Aitken et al. (2023) and subsequently mapped onto the SOM. Each cell represents a neuron in the SOM and contains 

the data points mapped to it. The pie charts within each cell indicate the proportions of different classes present. The letters A–E 355 
highlight regions of the SOM with similar properties, they are manually defined to aid description and interpretation. 

We shortly summarize the classes from Aitken et al. (2023): The crystalline-basement class indicates where the bed is 

interpreted to consist of igneous or metamorphic rocks (including high-grade metasedimentary rocks), with either no or only 

a thin veneer of sedimentary cover. Typically, these regions possess the characteristics of high elevation and high gravity with 

high spatial variability in topography, gravity, and magnetic data. Type 1 basin class represents regions where sedimentary 360 

basins are preserved in relatively unmodified basins, with typical characteristics of low elevation and low gravity, and low 
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spatial variability in gravity and magnetic data. Along-track roughness tends to be low. The intra-basin volcanics class includes 

areas where volcanic rocks are interpreted to be emplaced within a Type 1 basin sequence. Type 2 basin class in turn represents 

areas sedimentary rocks are known or inferred but the original depositional basin is not preserved. These rocks tend to predate 

the formation of the present landscape, are often uplifted to high elevations, may be intruded by younger igneous rocks, may 365 

be heavily eroded and may have geophysical characteristics more similar to crystalline basement than Type 1 basins. Mixed 

classes are analysis where the geophysical characteristics is not providing clear evidence for an assignment to a single class 

(see Aitken et al. 2023 for more details on the classification).  

We would expect our SOM to be contributing the most to an improved understanding of the mixed or inconclusive classes. 

Therefore, we sample for each data point of our SOM its class according to Aitken et al. (2023). Figure 6 shows for each cell 370 

of our map the percentage of classes present as a pie chart. Form this classification map, we define 5 domains, which have a 

predominant class. For example, Type 1 basins are predominantly located within cluster C aligning with the expected 

characteristics of smooth beds, low gravity, and minimal magnetic signals. In contrast, crystalline rocks are predominantly 

found in the cluster E. This observation supports the assumption that strong magnetic anomalies are typically generated by 

crystalline rocks. Furthermore, crystalline rocks are also seen in the left side of cluster B. This sub-cluster exhibits high 375 

roughness, intense magnetic and gravity signals as expected for crystalline rocks. Type 2 basins, however, do not show a 

distinct concentration, but are visible across various regions of the map. This dispersion raises questions about the feasibility 

of coherently inferring this class solely from the attribute compilation used here or from the robustness of defining this class 

over such a large region. Possibly, the Type 2 basins, in this region mainly sedimentary rocks on highlands, have a more 

heterogenous build-up or reflect different sub-types compared to the interpretation by Aitken et al. (2023). For the mixed class, 380 

no clear domain can be found on the SOM conforming their complex nature. 

On the map in Figure 7, we show the SOM representations as a map projection from the individual flight lines, and in Figure 

8 along a profile through the study area, in order to provide a spatial representation. Please note that the SOM is mapping data 

firstly in a 2D Domain based on attribute similarity and irrespective of the geographic location (see inset in Figure 7). Hence, 

the domains A to E seen in Figure 6 and Figure 7 are only to guide visual comparison.  385 

Comparison with the bed type classification of Aitken et al. (2023) shows a general agreement (Figure 7). Particularly, the 

delineation of various highlands corresponds closely between the two classifications. However, for some structures, as Knox 

Highlands (classified as Crystalline) and Highlands A (classified as Type 2 Basin), there are differences in the results. This is 

coherent with the observation that Type 2 Basin class seems to be mapped for quite dissimilar physical settings. 

Additionally, most basins, including the Southern Wilkes Basin, Central Aurora Basin, and Aurora South Basin, exhibit strong 390 

consistency with the classification presented by Aitken et al. (2023). Furthermore, the sedimentary basin likelihood map as 

presented by Li et al. (2022) consistently indicates thick sedimentary layers in areas that were mapped within our C. The most 

significant disagreement between the SOM and the classification by Aitken et al. (2023) is shown for the Sabrina Basin and 

Aurora North Basin. In these areas, the fine-scale variations within Clusters A, D, and E of the mapped SOM somehow 
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contradict the homogeneous classification by Aitken et al. (2023), indicating that the SOM might be able to add local variations, 395 

best seen when compared along an individual flight line (Figure 8).  

 
Figure 7: Representation of the clusters from the SOM. A) Geographical distribution of the SOM., B) Unified distance matrix for 

the presented SOM. C) Classification of geological bed type from Aitken et al. (2023). Yellow line indicates profile of Figure 8. 

Along a flight line (Figure 8) the interpretation by Aitken et al. (2023) does not clearly follow the boundaries visible in the 400 

data and SOM. The radar data show that there are sections of the basin where no return from the bed was detected (e.g. distance 

~100 km), while it appears as a very smooth reflector in places where it was detected (~140 km). Additionally, the magnetic 

signal exhibits a predominantly long wavelength above the basin and shows no obvious correlation with the bed. These 

observations indicate the presence of non-magnetic rocks near the bed. The SOM effectively captures the abrupt change at the 

rise of Aurora North Basin in the north of the profile (Figure 8). For the clusters B and E the correlation between the magnetic 405 

signal and bed elevation becomes evident. This suggests the presence of magnetic rocks near the surface of Aurora North 

Basin, whereas it is not the case in the Aurora Basin. This illustrates how the SOM can successfully integrate information from 
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various data types into a single parameter clearly highlighting the most probable geological boundaries. It therefore could be 

a useful tool for future mapping attempts and could also help adjusting boundaries while leveraging all available data types. 

 410 

Figure 8: A combined plot of magnetics, gravity and radar data along a profile. Beneath the plots, the SOM is shown and the 

classification by Aitken et al., 2023. Colour coding for SOMS is according to the inset in Figure 5. 

4.4 Pitfalls and possibilities of SOMs 

The comparison to the expert judgment approach by Aitken et al. (2023) by compiling available data sources, shows that SOMs 

can potentially provide an added level of detail or aid in detecting possible errors or inconsistencies as it should be based on 415 

measured data as much as possible. Nevertheless, while it seems to be compelling to trust the automatic interpretation of the 

SOM in comparison to direct studies, one should be aware of the limitations of the method. First of all, the presented choice 

of attributes is not the only possible choice. While many attributes included in our analysis show high correlation (Fig. 4), it is 

important not to omit attributes that may show highly similar features. However, a balanced approach is important and focusing 

too much on a certain kind of attribute or dataset might distort the outcome. Other attributes derived from the presented datasets 420 

or even other independent datasets like roughness derived from ice surface elevation or ice flow velocity could be added. 

Others might be omitted as for example the use of the gravity field and the vertical gradient seems to add little additional 

information. In general, it would be preferential to use a consistent data set, possibly line data for all observed fields to improve 
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interpretation at survey scale. Still, a slight trade-off might be thereby that along-line variations may be underestimated if line 

orientations are not located perpendicular to the main strike direction.  425 

But this trade-off appears to be preferential to the use of gridded data products, where interpolation and the lower resolution 

of grids compared to line products, affect the quality of the resulting products. Still, the insensitivity to spatial anisotropy of 

gridded data products might outweigh the gains in data resolution. Furthermore, additional attributes that can be derived from 

gridded datasets that potentially enhance the resulting SOMs. Additionally, the utilization of migrated radargrams in 

combination with a correspondingly adjusted bed elevation dataset could potentially reduce the correlations between roughness 430 

and ice thickness. This approach has the potential to produce improved results, with an improved overall resolution and quality 

of the attributes.  

One drawback of the SOMs is that there is little control over the meaning of the output clusters, requiring an interpretation to 

assign meaning to each cluster. One should mention as well that not all features mapped by the SOMs might be a geological 

signal, but some, especially local features, might reflect data quality (measurement errors or noise). To generate a well-435 

informed classification, multiple data types should be combined and a careful assessment of the data products is required.  

Still, a product like SOMs will greatly assist in defining (geological) units with distinct properties and to aid interpreters to 

make data-optimised classifications and to understand the support for their interpretations from the data selection. Especially, 

when zooming in on the geology under the ice and the spatial scale that seems to be most important for understanding the 

coupling of ice-sheets and the underlying solid earth structure (e.g. McCormack et al. 2022), the SOMs can provide a second 440 

level of detail. As always, careful evaluation of the final results is still a crucial point in estimating subglacial properties as the 

SOMs do not provide immediately a new geological map, but a tool for classification and interpretation. 

5 Conclusions  

We present a novel form of mapping subglacial geology by using Self-Organizing Maps applied to radar, gravity and magnetic 

data sets, mimicking flight lines from the NASA Operation Ice Bridge (OIB) dataset in East Antarctica. The attributes 445 

calculated from the data sets provide a suite of products useful for interpretation, however, challenging for manual 

interpretation. Hence, the SOM groups the complex features into an easy to understand common framework.  

Comparison to the classification of Aitken et al. (2023) shown in general a good agreement for the major classes in regions of 

low complexity, but indicates as well the nonunique nature of some classes. In such areas the SOMs can help to refine existing 

interpretations and unveil previously unknown small-scale structures. To further enhance the clustering capabilities of the 450 

SOM, an in-depth exploration of hyperparameters could lead to improved results.  

Furthermore, the choice of input datasets by assessing the importance of different attributes is worth exploring in more detail. 

Here, we limited ourselves to choosing similar number of attributes for the three different kind of data in order to prevent a 

bias towards a single data set without testing how the results would varying the number of attributes, mainly due to 

computational reasons, but also due to the different characteristics of the input data set (flight lines and resampled gridded 455 

products)-.  
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In general, data selection is a key to avoid a bias by inconsistent data sets and for example, the recently released geophysical 

data catalogue from the British Antarctic Survey includes multiple surveys with magnetic, gravity, and radar data (Frémand et 

al., 2022), presenting an opportunity to further explore the possibilities of SOMs for flight line data. 

As a next step, the classification of different bed types could also serve as constraint, a priori information for (joint) inversion, 460 

that could extend the analysis from a more description of subglacial properties to a physical earth model, needed to describe 

the full coupling between the Solid Earth and the overlying ice-sheets. 
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